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I. Introduction and Background

The objective of the research conducted in this project is to develop a

methodology to investigate the accuracy of Airport Safety Modeling Data (ASMD) using

statistical, visualization, and Artificial Neural Network (ANN) techniques. Such a

methodology can contribute to answering the following research questions:

Over a representative sampling of ASMD databases, can statistical error analysis

techniques be accurately learned and replicated by ANN modeling techpiques? This

representative ASMD sample should include numerous airports and a variety of terrain

characterizations.

• Is it possible to identify and automate the recognition of patterns of error related

to geographical features?

• Do such patterns of error relate to specific geographical features, such as

elevation or terrain slope?

• Is it possible to combine the errors in small regions into an error prediction for a

larger region?

• What are the data density reduction implications of this work?

ASMD may be used as the source of terrain data for a synthetic visual system to be

used in the cockpit of aircraft when visual reference to ground features is not possible

during conditions of marginal weather or reduced visibility. In this research, United

States Geologic Survey (USGS) digital elevation model (DEM) data has been selected as

the benchmark. Artificial Neural Networks (ANNs) have been used and tested as

alternate methods in place of the statistical methods in similar problems. They often

perform better in pattern recognition, prediction and classification and categorization

problems. Many studies show that when the data is complex and noisy, the accuracy of

ANN models is generally higher than those of comparable traditional methods.

In preliminary research, data was gathered for five airports that were used for

training of ANN models. The data encompassed a 60 by 60 statute mile square region of

interest (ROI) around an airport composed of geographic point pairs of elevation postings

from both the ASMD and USGS databases. Before the development of ANN models, an



error value was computed for each point for the entire airport ROI using the following

formula:

ASMD error - USGS elevation- ASMD elevation

With the computed errors, an average error over the entire ROI was calculated as used as

an evaluating metric. The errors ranged from six meters to forty-two meters as shown

below:

Asheville Regional (NC)

McCle llan-Palomar (CA)

Delta Municipal (UT)

Scappoose Industrial A irpark (OR)

Denver (CO)

= 42.91 meter

=30.07 meter

=16.31 meter

=11.73 meter

= 6.34 meter

It is claimed that ninety percent of the elevations in the ASMD are within thirty meters of

the actual elevation. According to the average ASMD errors, four of the five airports fall

within thirty meters. These predetermined errors were used for comparison purposes in

the development of ANN models. The project was conducted over two years and

includes three phases. The accomplishments and the summary of results and findings are

described in the following sections.

2. Project Phase I - August 2000 - October 2000

The following objectives have been accomplished during Phase 1 of the

project in the first year:

Literature search on the use of statistical models and ANN models

Investigate error in geographical databases related to geographical characteristics

The literature review included ANNs associated with error and error modeling in

geographical databases, as well as the classical ANN application areas. The goal was to



investigatedifferent typesof ANN algorithmsandtheir appropriateapplicationareas.A

number of studiesindicate that Backpropagation,Learning Vector Quantization,Self

OrganizingMap, Reinforcement,Hopfield, and Modular Network modelsmay be best

suitedfor this researchin determiningthe error in geographicalterraindatabases.It was

also concluded that Gaussianinitialization may be the best way to handle the

complex/noisydatacontainedin thesedatabases.As a result of the lite[ature review,

thesesix ANN algorithmshavebeeninvestigatedfor use in testingthe airport datafrom

thepreliminaryresearch.

3. Project Phase II - November 2000 - July 2001

The following objectives were achieved during Phase II in the first year:

• Investigate ANN application development software packages and identify one

that is suitable for this project

• Generate data files for the five airports for training and testing of the ANN models

• Explore various ANN algorithms to best determine the error in the ASMD

database

After the initial survey of ANN development packages, two software packages were

considered NeuroSolutions® and NeuralWorks Professional IIfPLUS. It was decided

that NeuralWorks Professional II_lus included features that were appropriate for the

needs of this project.

3.1 ANN Data Generation

For each of the five airports, one training file and one testing file were generated.

Each of the training and testing files included two input patterns and one output pattern.

Input pattern-1 included the elevation values from the ASMD database, and input pattern-

2 included the elevation values from the USGS database. The output pattern was the

predetermined error between the two elevations from the ASMD and USGS databases.



TheASMD and USGS elevation values (input values) were normalized between "0"

and "1" when sigmoid transfer function was used during training. The formula below

was used for normalization

where

y

(max- min)
x (elevation- min)

y = scaled value

max- maximum value of the related data

min = minimum value of the related data

The software automatically normalized the data between "-1" and "+ 1" when the TanH

transfer function was used during training. Furthermore, the output values were coded as

binary based on the following assumption criteria

a) If USGS elevation > ASMD elevation, then the output value (error) is coded as

"1", indicating an alarm or risk error in the ASMD elevation.

b) IfUSGS elevation < ASMD elevation, then the output value (error) is coded as

"0", indicating no alarm or no risk in the ASMD elevation.

c) If USGS elevation = ASMD elevation, then the output (error) is coded as "0",

indicating no alarm or no risk in the ASMD elevation.

3.2. Development of ANN Models

Based on the literature review results, the following ANN algorithms have been

selected and investigated to design and develop ANN models to determine the ASMD

error

• Backpropagation



• LearningVector Quantization

• SelfOrganizingMap

• Reinforcement

• Hopfield

• Modular

Therewere approximately100ANN modelsdeveloped,trainedandtestedusing

the abovesix ANN algorithms. TheModularANN modelsyieldedthebestresults.With

theseresults, it was decidedto further investigateand enhancethe ModularNetworks

model in order to improvethe resultsachievedin error recognition. Modular Neural

Networks consist of a group of networks(referredto as"local experts")competingto

learn different aspectsof a problem. A gating network controlsthe competitionand

learnsto assigndifferentregionsof thedataspaceto different localexpertnetworks. The

learningrule tendsto encouragecompetitionamonglocal expertsfor differentregionsof

the input space.

The best(optimal) ModularANN model, amongthe 100models,had oneinput

layer (with two processingelements),one-hiddenlayer (with one processingelement),

and one output layer (with oneprocessingelement). For gatingnetworks,one hidden

layerwith four processingelementsandoneoutputlayer with threeprocessingelements

were usedin the model. Various ANNs were trained and testedwith more than one

hiddenlayer. However,theresultsshowedthat onehiddenlayer ANN modelsperformed

betterthanthe otherswith two or more. Momentumvalueswerevariedbetween0.4and

0.9, andANN modelswith 0.7momentumyieldedbestresults. Similarly, thosemodels

with theExtended-Delta-Bar-Delta Learning Rule resulted in better performance.

Although the literature suggests that the TanH transfer function may be the best in

real world applications, the number of ANN models developed in this research showed

that the sigmoid transfer function yielded better results for this problem domain. For

initialization and noise generation, a Gaussian Distribution was used. Although the

software can automatically set the epoch equal to the number of vectors in the training

file, the epoch was manually set up to 500. In order to set the error convergence criteria,



thesoftware'sRMS instrumentwasusedandathresholdvalueof 0.001wasselectedfor

convergencecriteria. Finally, all the layers within the model were interconnected.

3.3 Results and Conclusions

The testing results for each of the five airports are shown in Tables 1, 2, and 3

along with the predetermined average error. These testing results demonstrate that

Modular Network models are viable in determining the error in the ASMD database. The

predetermined average error for each airport was used for comparison with the average

error predicted by the ANN model.

Table 1. Testing Results-Asheville and Delta Airports

Asheville Regional Airport

Number of Iterations: 7500

Transfer Function: Sigmoid

Learn Rule: Extended-Delta-Bar-Delta

Momentum: 0.7

RMS: 0.0857

Actual Output Average: 40.77491

Desired Output Average 37.89625

Predetermined Error: 42.91 meter

Delta Municipal Airport

Number of Iterations: 7500

Transfer Function: Sigmoid

Learn Rule: Extended-Delta-Bar-Delta

Momentum: 0.7

RAMS: 0.0583

Actual output average: 15.16636

Desired output average: 10.5373

Predetermined Error: 16.31 meter



Table 2. Testing Results-Denver and Scappoose Airports

I1'Number of Iterations: 7500

i Transfer Function: Sigmoid

IILearn Rule: Extended-Delta-Bar-Delta

i Momentum: 0.7

I!RMS: 0.0812

:iiActual Output Average: 8.44611

Desired Output Average: 4.86944

Scappoose Industrial Airpark

Number of Iterations: 7500

Transfer Function: Sigmoid

Learn Rule" Extended-Delta-Bar-Delta

Momentum: 0.7

RMS" 0.0239

Actual output average: 9.05

Desired output average 10.03

Predetermined Error: 11.73 meter

Table 3. Testing Results-McClellan-Palomar Airport



4. Phase !11August 2001-July 2002

During the first year, an Artificial Neural Network (ANN) model was developed and

tested with data for five airports. This Modular type ANN had one input layer, one

hidden layer and one output layer. It was able to predict an average error for geographic

point elevation pairs for a region of interest around an airport based on the data modeling

assumptions of:

* IfUSGS elevation > ASMD elevation, then the output value (error) is coded

as "1", indicating a risky error in the ASMD elevation.

* IfUSGS elevation < ASMD elevation, then the output value (error) is coded

as "0", indicating no alarm or no risk in the ASMD elevation.

• If USGS elevation- ASMD elevation, then the output (error) is coded as "0",

indicating no alarm or no risk in the ASMD elevation.

Based on the results achieved in the first year of the project, the investigators

continued to enhance the models and test more airports in order to ensure validity of the

models. In the second year, the project objectives were:

• Generate more data files for model development and testing

• Design, developmem and analysis of statistical model

• Design, development and analysis of ANN Model(s)

• Refinements to the selected best models

• Statistical analysis of the results to determine best ANN model(s) and/or

statistical models

4.1 Airport Data File Acquisition

In the accomplishment of the objectives for Phase III, it was necessary to gather more

geographic data for a newly selected set of airports. The five original airports chosen

were picked to gather a variety of East Coast, Midwest and West Coast airports. The

next set of airports was chosen to try and capture a varied range of terrain elevation

characteristics. A good spectrum of geographic features was sought. The aim is to

investigate geography from coastlines to mountain ridges, valleys to high elevations and

peaks, and varying degrees of sloping terrain to large differences in elevation within a



selectedregionof interestcovetingarangeof high positiveelevationvaluesto negative

values. In the selectionof these next airports, Sectional Aeronautical Charts published by

the U.S Department of Transportation, Federal Aviation Administration and the National

Aeronautical Charting Office were used to get a preliminary look at the terrain and help

map out the region of interest before moving on to replicate it with computer

applications. The procedures for the acquisition of data were modified slightly from the

prior phase of research due to enhancements in utilized computer applicatio_as. The

methodology was basically the same but there are some key details that should be noted

to ensure accurate data acquisition and reduce rework of a very labor intensive and time

consuming process. A checklist of procedures, supporting developed documents and

necessary references are attached in Appendix 1.

The next set of airports contained three samples. They were Lake Havasu City

Airport, John Wayne-Orange County Airport and Palm Springs Regional Airport. These

airport data files covered a ROI 60 by 60 square statute miles around an airport reference

point (ARP) and contained geographic latitude, longitude pairs of ASMD elevations to

their associated USGS elevations. The preferred spacing of the elevation postings for the

construction of the USGS ROI was 30 meters but some of the airports had only 10 meter

spacing available for certain 7.5' x 7.5' Digital Elevation Models (DEMs) that composed

the selected area. The drawback to this spacing variation in USGS source data was that a

large data density of points had to be searched in matching corresponding geographic

points. This added to processing time in the construction of sample files and had a

definite impact on storage of the preprocessed files and on the amount of processing runs

necessary for building the final sample. The USGS file of the entire ROI often had to be

partitioned into smaller elements to stay within the bounds of the statistical grror analysis

program limitations.

4.2 Modular ANN Model Testing for New Airports

The three new airport data files were formatted and then testing files were developed for

processing with the Modular ANN model. The testing results that are presented in Table

4 and Table 5 demonstrate this models' accuracy.
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JOHN WAYNE-ORANGE COUNTY I

Number of iterations 7500

Transfer Function: Sigmoid

Learn Rule: Extended-Delta-Bar-Delta

Momentum:0. 7

RMS" 0.0442

Actual Output Average: 21.80

Desired Output Average: 19.1835

Predetermined Error: 23.96

LAKE HAVASU CITY

Number of iterations" 7500

Transfer Function: Sigmoid

Learn Rule Extended-Delta-Bar-Delta

Momentum:0.7

RMS" 0.0496

Actual Output Average: 32.87

Desired Output Average: 23.7240

Predetermined Error: 23.51

Table 4.Testing results-John Wayne and Lake Havasu Airports

PALM SPRINGS REGIONAL

Number of iterations: 7500

Transfer Function: Sigmoid

Learn Rule" Extended-Delta-Bar-Delta

Momentum:0.7

RMS: 0.0570

Actual Output Average" 63.97

Desired Output Average" 67.0852

Predetermined Error: 57.60

Table 5.Testing results-Palm Springs Airport
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4.3.New Data Modeling Assumption

National Imagery and Mapping Agency's (NIMA) Digital Terrain Elevation Data 1

(DTED1) files serves as the source data for the ASMD models. The data vertical

accuracy objective of this DTED 1 is stated by NIMA as +- 30 Meters at 90% linear error

(LE). The full resolution 3 arc second DTED have a vertical accuracy of + 30 meters LE

at the 90% confidence level. If the error distribution is assumed to be Gaussian with a

mean of zero, the statistical standard deviation of the errors is equivalent to the root mean

square error (RMSE). Under those assumptions, vertical accuracy expressed as + 30

meters linear error at 90% can also be described as an RMSE of 18 meters. Concerning

the Airport Safety Model (ASM), which is based on this data, no greater accuracy is

implied or should be assumed.

Absolute vertical accuracy (in meters)"

Data source RMSE LE at 90%

DTED 18 + 30

It is claimed that ninety percent of the elevations in ASMD are within thirty meters of

the actual real world elevation. In this project, USGS data is used as a more accurate

baseline standard for comparison for actual real world elevations. USGS source data was

selected due to its unclassified availability as well as a higher resolution and accuracy

claims when compared to DTED1. The following USGS vertical elevation accuracy

statement supports this, "For a 7.5 minute DEM derived from a photogrammetric source,

ninety percent must have a RMSE of seven meters or better and ten percent are in the

eight to fifteen meter range" (Fact Sheet102-96). Based on these accuracy claims, USGS

12



vertical accuracy (7 m RMSE) does appear to have a higher vertical accuracy standard

than the ASMD/DTED 1 vertical accuracy (18 m RMSE).

Using USGS as an elevation data standard or baseline, the ASMD error (the USGS

elevation minus ASMD elevation) should fall within the + 30-meter range to reach a

conclusion that this is an accurate ASMD elevation point. Due to aircraft safety

considerations, our analysis needed to identify ASMD elevations that were significantly

greater than the USGS standard points. Therefore, the following data modeling

assumptions are added to our research during the second year.

• If the ASMD error is greater than +30 meters, it is dangerous and coded as "1"

• If the error is equal to or smaller than +30 meters, it is safe and coded as "0"

4.4 Visualization and Statistical Analysis

For each airport data file sample, analysis was done onthe elevation error

between the given ASMD value and the corresponding discovered USGS value.

Histograms of the errors were created and statistical measures of the error are presented

in tabular format. Denver International Airport is used to illustrate the error analysis,

which is presented in Figure 1 and Table 6 with the rest of the airports presented in the

discussion of analysis and results.

13



r

B/n

-43

-35.1

-27.2

-19.3

-11.4

-3.5

4.4

12.3

20.2

28.1
36

43.9

51.8

59.7

67.6

75.5

83.4

91.3
99.2

107.1

115

More

Frequency _
1

2

15

131

661

3134

15138

12860
4358

1809

72O

265

159

59
22

22

14

7

6

11

4

0

Denver International Airport

16000
Histogram

14000

12000

_10000
C

s0.00
o

6000

4OOO

2O0O

I I

O4 (.0 60
• •

C3_ 0") ,,:__
Bin _ CO ¢0

O3
O3

L£-)

Figure 1. ASMD Error Histogram
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Table 6. ASMD Error Statistical Measures
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Additionally with our assumption of a dangerous value having an ASMD error

greater than +30m, the total number of dangerous and safe elevations and the percentages

14



of each were calculated and the data for Denver International is presented in Table 7 with

the rest of the airports presented in the discussion of analysis and results.

# Safe values 38324

# Danger values 1074
Total 39398

% Safe 97.27%

% Dangerous 2.73%

Table 7. Safe/Dangerous ASMD elevation points

To support the statistical aspect and follow-on ANN models, a visualization

component was added to this phase of the project. ARCVIEW® GIS 3.2 from the

Environmental Systems Research Institute Inc. was utilized for this portion ofthe project

for its ability to display both two dimensional and three dimensional representations of

geographic data.

Each airport data file acquired during the project was decomposed and formatted

into files of the ASMD elevations, USGS elevations and Error values. Two,dimensional

views and three-dimensional scenes of this data and varying combinations of this data

were built. The 2-dimensional views and 3-dimensional scenes were composed of both

point features and Triangulated Irregular Networks (TINs). The point features were

necessary when there were voids in the data. Some files were not continuot_s areas due to

a lack of available data within the USGS database or due to bodies of water for which no

DEM data exists. Again, Denver International Airport (DEN) is used to illustrate the

utilization of visualizations and the capabilities of ARCVIEW®. More visualization for

other airports will be included in Appendix 2 and are addressed in a discussion of

analysis and results.
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DenverInternationalAirport
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Figure 2. Visualizations of DEN from ASMD
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2-D view of ASMD Error v. USGS Elevation
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Figure 3. Visualizations of DEN from USGS data and ASMD Error data
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Figure4. Visualizationof ASMD Error datafor DEN
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The description, analysis and conclusions are discussed for Denver International and the

other airports in a follow on section.

4.5 New Modeling Assumptions with the Modular ANN Model

The Modular ANN was trained and tested with the new modeling assumptions. The

RMS results are presented in Figure 6. The results varied from 0.3043 to 0.5079 and the

average RMS for the eight airports was 0.4099. This is considered a high RMS result

that lead to the conclusion that another ANN model should be considered.

[Q_Asheville B McCellan. Denver' O Delta, O John wayne IB Palm springs. $cappose BLake Havasu i

RMS

0.6"

0.6-

0.4 -

0,3-

,2,

iiiiiiiiiiiiiii iiiiiiiiiiiii !

I ......................................................................................................................_il;i;iill ................................................................................................................................ i

' {

Modular

ANN-RMS Results

Figure 6. ANN RMS Results

4.6 Backpropagation Research Summary

The research for another candidate ANN model, which could produce better RMS

results, focused on backpropagation networks for the reasons described below. The

backpropagation-learning paradigm is very popular among neural network researchers

20



due to its capability of recognizing large amount of data. These networks are consistent

estimators of binary classifications under similar assumptions. There are potential

advantages of backpropagation idemified in the literature for the type of complex data

analysis, which is required in the investigation and error comparisons of large elevation

databases. It is a general-purpose non-linear regression technique, which attempts to

minimize global error. Any multi-dimensional function can in theory be synthesized by a

back-propagation network. It can provide very compact distributed representations of

complex data sets.

Preliminary work has shown that one of the central issues of a back-propagation type

network is to set up an appropriate learning rate. It is important to keep learning rate low,

although it can lead to very slow learning. Therefore, the momentum is used for faster

learning with a low learning rate. Another problematic area is to appropriately set up the

number of hidden layers and processing elements.

Therefore, after reviewing the literature, the following research questions have been

followed to design the optimum architecture.

• How does learning rate and momentum affect ANN learning? What is the best

combination for training for this geographical database?

• How does the hidden layer size affect the learning? What are the optimal

processing elements in the hidden layers for this application?

The investigation of these research questions is now discussed.

4.7. Backpropagation ANN Data Generation

A new set of data was generated for the training and testing processes for each

airport. The ASMD and USGS elevation values were scaled between "0" and "1" for

21



inputs and the output (error) values were coded as binary based on the modeling

assumptions adopted in Phase III

• If the error is greater than 30 meters, it is coded as "1"

• If the error is less than or equal to 30 meters, it is coded as "0"

In this study, one training file and one testing file were used for each of 17 airports.

Although testing and training files are randomly selected samples from the data, both

training and testing files are reasonably representative of an entire ASMD database's area

sample points. Therefore, the training/testing data file sizes are considered independent

for each airport and the hidden elements, layer size, learning rate and momentum are

dependent.

The initial network weights were set up randomly between-10 and 10 and then on-

line training was used for each case. The network was able to update the network weight

after training. In all of the trials, the sigmoid function was used since data was scaled and

coded between "0" and "1".

4.8 The effect of learning rate and momentum on ANN learning

Figure 7 shows a simple standard Backpropagation network that is developed

with one input layer, two hidden layers and one output layer.

For the experiments the network was built with the input layer having three

processing elements, the hidden layer one processing element and the output layer one

processing element. The Delta learning rule was used for training with the sigmoid

transfer function.
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Figure 7. SampleBackpropagation network

Experiments were conducted to iteratively determine momentum and learning rate

parameters that would perform well using number of iterations and an acceptable RMS as

measures of performance. When data is coded based on the 0 and 1 criteria, the research

shows, a lower RMS corresponds to better performance. Therefore RMS was chosen as a

critical measure of network performance. The Asheville Regional airport is used in these

experiments. In previous model runs it was the most challenging airport to model and

database elevation errors had the largest elevation error values. The momentum

parameter, which makes the weight distribution properly, was determined first as is

shown in previous backpropagation research studies. The experimental results can be

found in table 8,9, 10 and in figures 8 and 9. For these experiments, RMS convergence

criterion as 0.010 was used for error determination; therefore, the number of iterations

was used to determine best level of parameters. The learning rate was set as 0.9 and the

momentum was changed between 0.3-0.9. The results of this experiment showed that

when the learning rate was fixed at 0.9; the momentum value of 0.6 had a significantly
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influence reducing the number of iterations. Then, the momentum value was set at 0.6

and the learning rate was changed between 0.3-0.9.

Learning rate

RMS

_Momentum

Iteration

0.010

4436

0.010

7233

0.010

7445

0.9

__ 0.010

__ 4491

0.010

4456

0.010

9548

Table 8. ANN Parameter Sensitivity Analysis of Asheville Airport- Learning Rate
of .9, Variable Momentum

Fixed Learning Rate vs Momentum

1 2 3 4 5 6 7

Iteration

---- Momentum

Figure 8. Asheville Airport: Varying Iterations and Momentum Values for a Fixed

Learning Rate (.9)
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Learning rate

RMS

Momentum

Iteration

0.010

4460

0.010

o.6

0.010

4128

0.010

4165

0.010

4329

0.010

4207

Table 9. ANN Parameter Sensitivity Analysis of Asheville Airport Momentum of .6,

Variable Learning Rate

4OOO

= 3000
o

2ooo

1000

Fixed Mome ntum vs Lea rning rate

: :v_ .. ........... _ _ _ 1

 iii 09
0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

i; 0

1 2 3 4 5 6 7

--Iteration

--- Leaming Rate

Figure 9. Asheville Airport: Varying Iterations and Learning Rate Values for a

Fixed Momentum (.6)

As shown in the Table 8 and Table 9, the learning rate with 0.9 yielded the best

result with 0.6 momentum value. The learning rate with 0.4 yielded the best result with

0.6 momentum value in two experiments. After determining that, it was tested with

McClellan airport. The results can be found in Table 10.
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Learning rate

RMS

Momentum

Iteration

0.47195

0.6

8938

Table 10. McClellan-Palomar Airport ANN Backpropogation Results

The results showed that 0.6 is an appropriate number for momentum. Although a

small (0.4) learning rate yielded best result, there is barely difference between two

learning rates based on RMS. Based on the above experimental results, it was

determined the best parameter values for momentum was 0.6, and for learning rate was

0.4 using the iteration size as a determining criteria. It is concluded that larger

momentum works best with smaller learning rate for the threshold ASMD vs. baseline

USGS error analysis being conducted.

4.9 The effect of hidden layer size and processing elements in the hidden layers

The literature shows that when the network has hidden layers, the results of

training might depend on the random weights. Therefore, as mentioned earlier in this

report, the initial network weights were set between-10 and 10 and then on-line training

was used for each case.

Having determined the momentum and learning rate, layer parameters in the

network were explored, including the number of hidden layers and number of processing

elements per layer. There is no theoretical limit on the number of hidden layers, but

some research has been done which indicates that a maximum of four hidden layers are

required to solve complex pattern recognition problems. Each layer should be fully
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connected to the succeeding layer. During learning, information is propagated back

through the network and used to update the connection weights.

In order to determine layer parameter combinations that performed well, the

iterations were fixed at a reasonable level of 35,000 and the lowest RMS value was used

as the measure of performance. To start this process, a second layer was added to the

network and the number of processing elements was increased.

Table 11 summarizes the testing results using Asheville airport data. Each hidden

layer was tried with various processing elements starting from 1 to 10. As shown in the

Table 11, the network that has more hidden layer with three processing elements yields

better result than a simple network with one hidden layer and one processing element in

the layer. The best (lowest RMS) network is highlighted in Table 11, which has two

hidden layers, with three processing elements in the first hidden layer and two processing

elements in the second hidden layer.

hidden

layer

2 n¢l

hidden

layer

RMS I st

hidden

layer

2 n¢l

hidden

layer

RMS

1

2

3

3

3

3

1

6

1

012780

0.2776

0.2722

0.2803

3 0.2754

4 0.2751

5 0.2747
, ,

10

6

10

4

5

1

2

0.2731

0.2725

0.2813

0.2757 .....

0.2766

0.2750

0.2762

Table 11. Backpropogation Processing elements-Asheville Airport
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10

0

RMS
--- 1st hidden layer

2nd hidden layer

Figure 10. RMS vs. Number of Processing Elements in Hidden 1_t and 2 nd Layers

From Table 11 it can be concluded that first hidden layer with large number of

processing elements does not yield good results. Therefore, from the above trials, it was

determined that three processing elements in the first hidden layer and two processing

elements in the second hidden layer produce the best observed results. This network

model with an optimized number of layers and processing elements was then validated

using Denver and McClellan Airports. The results showed a significant reduction in RMS

values. For example, McClellan Airport changed from 0.4793 shown in Table 10, to the

0.1793 RMS value shown in Table 12.

Based on the testing results, the following RMS results were achieved:

Airport

RMS

Asheville Airport

0.2707

Denver Airport

0.2191

McClellan Airport

0.1793

Table 12. Improved model RMS results
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4.10 Analysis, Results and Airport Data File Discussion

With the design of the Artificial Neural Network model accomplished, an analysis

and discussion of findings can begin. The first issue is an analysis of the viability of the

Backpropagation ANN for the given airport data. To address this, a comparison of this

network will be done with the Modular network investigated in Phase II. In Phase III, the

modeling analysis criteria was changed to address ASMD elevation not only above or

below the USGS elevation, but the ASMD error outside a tolerance of +30m of the

baseline USGS database. Figure 11 represents the RMS values using the data modeling

criteria of Phase II. Both the Modular Network and Backpropagation Network were

tested using this modeling criteria.

i .... ' , ,

Q Asheville = McClellan D Denver O Delta

B John Wayne Q Palm Springs m Scappose O Lake Havasu
' .........

............................................. _iiiiiii_iiiii_ii_iiiiiiiiii_;i iiiiii_iiiiiii_!'i_iiiiiiiiii iiiiiii iiiiiiiiiilii iiiii_iii_iiiiii ii_i ii ii
0.6

.....!!iiiiiiiiiiiiii i
0.5 i! iiiiii_i_iii_!i_!iii!i!i!i!i_i!i!i_i_i_i_iii_i!i_ii_i_i!_i!i_i_iii!iiiiiiiiii_i_i_ii!iiiiiii!_ii_ii_i_ii!iii_i_!iiii_i_iiiiiiii!iii_i!i_iii!ii_iiiiii!ii!!i!i_iii!iii_i_iii_i_!ii!ii!iiiii_i_ii_i_iiii_iiiiiiiii_i_!_!_i!iii_iiiiii_ii!i!_iiiiiiiiiiiiiiii_iii!i_!_iii!ii_!!ii_iii_!ii

0.3

_ iii,i

Backprop Modular

Figure .11. ANN RMS Results with Phase II Error Pattern Criteria

Based on the Modular network results from Figure 11, it is concluded that the

Modular type of network model is more successful in recognizing the error pattern in

geographical databases where the error is classified as risky or not with the criteria of the
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ASMD elevation lower than the baseline USGS elevation. The network properly

classified 100 percent of the patterns, but some of the airports results had high RMS

values (e.g., Lake Havasu City), when compared to the other airports when the Modular

network is used. Lake Havasu has the highest average error for the prescribed ROI

(57.60 meters) that could be a factor in the high RMS.

The Backpropagation results from Figure 11, yielded high RMS values. It is

concluded that Backpropagation may not be capable of recognizing the pattern in the

error database when using the data modeling assumption of Phase II. In other words, it

might not be possible from the results to interpret efficiently whether the

Backpropagation network learned risky areas when these areas are defined as any ASMD

elevation merely exceeding the USGS elevation.

Figure 12 represents the RMS values using the data modeling assumptions

adopted in Phase III.

[= Ashevilie, U McClellan U Denver, C]Delta, I"1John Wayne,,. U Palm Springs,., Scappoose, '" Lake Havasu [
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Figure .12. ANN RMS Results with Phase III Error Pattern Criteria
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FromFigure12, it canbeconcludedthatBackpropagationis betterableto recognize

the errorpatternin the databaseusingthedatamodelingassumptionsof PhaseIII where

anerrorthresholdof thirty metersis considered.Theresultsshowthat LakeHavasuand

John Wayne Airport yield a little higher RMS values than the others. For the outputs

illustrated in Figure 12, a quick discussion of the input data is necessary. The input data

was just a random sample taken from the ROI of each airport shown. This detail could

have an influence on the results and this will be addressed later.

Before any conclusions are made with respect to the RMS of specific airports, it is

useful to analyze the data visually. This can help identify potential underlying factors

influencing ANN results. Since Denver International Airport (DEN) was introduced

earlier in section 4.4, illustrating the elements of the visualization component, this airport

will be discussed first. The 2-D representation of Figure 13 shows a 3600 square mile

area around DEN with areas of missing data. This missing data is of no consequence,

with the qualification that the summary of results is for the area covered by the data

represented by each airport file and not of a ROI with defined dimensions of 60 by 60

statute miles. The view of interest is that of the USGS standard with contour lines as

shown in Figure 13. A depiction of contour lines on the elevation view of USGS data

shows that terrain depicted around this airport is not greatly sloped. Utilizing a contour

interval of 100 meters, it can be seen that the airport is on a large plain at high altitude

with a gently rolling slope. This is an important characteristic influencing the

comparison of geographic data and the ANN viability.
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Figure 13. 2-D USGS Visualization with Contours

The minimally sloped terrain lends to the capability of the neural network model. For

Denver International (DEN), the RMS was .2101. Using Denver International Airport

databases, a sample file of data was taken randomly from the ROI and processed to

discover how well the ANN mimicked the true output in categorizing geographic

positions above or below a designated threshold. For this process the data was coded

binary with ones and zeros representing dangerous (>30m error) or safe (<=30m error)

positions. Figure 14 is a visual representation of the ANN sample file.
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Figure 14. Visual Representation of DEN Sample file ANN Output

Input

Expected Output Legend

Figure 15. ANN Output v. Expected Output

Color Output

0.9-1.0003

.75 -0.9

.25 - .75

0.1 - .25

-.0004 - O.1

ANN Output Legend

Figure 15 is a visual representation of the sample file ANN output when viewed with the

desired output. Figure 15 contains two bands in a zoomed view of the sample file. The
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upper band is the expected output and the lower band is the ANN output. The legend

displays the coded output of values <=30m, coded 0, as white and the values >30m,

coded 1, in black. The ANN output is presented in a grayscale.

Figure 16 is a graphical representation of the ANN output from the sample file for

DEN.

More

Bin Frequency

-0.000443 1

0.0495921 5258

0.0996272 0

0.1496623 0

0.1996974 0

0.2497325 0

0.2997676 0

0.34918027 0

0.3998378 0

0.4498729 0

0.499908 0

0.5499431 0

0.5999782 0

0.6500133 0

0.7000484 0

0.7500835 0

0.8001186 0

0.8501537 0

0.9001888 0

0.9502239 0

1.000259 113

0
,,

ANN Output for DEN Sample File

Figure 16. Graphical Representation of ANN Output

The visual display and graph shows the ANN output was essentially zero on the low side

and one on the high side. These are the values for which the ANN was designed. The

ANN correctly mimicked the desired output and performed as expected.
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For the eight airports illustrated in Figure 12, the ANN correctly distinguished between

safe elevation points and dangerous elevation points every time. This was not always

correctly identified with a classification of one or zero. In some instances the

classification was on the order of. 8 on the high side and .2 on the low side. Although the

classification was different, the distinction was absolute and the match of safe points to

the low value and dangerous points to the high value was exact. One correlation can be

seen in the RMS. With an RMS above .2101, the ANN output was.8 and 2. This is

illustrated by the Asheville Regional Airport (AVL) sample file. The complete sample

file for AVL with both the expected (coded) outputs and ANN outputs are shown in

Figures 17 and 18. The color scales for these figures are the same as previous ANN

displays.

Figure 17. AVL Sample File Expected Output
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Figure 18. AVL Sample File ANN Output

The grayscale output of Figure 18 shows the different classification of safe and

dangerous elevation points, in this case at about .2 and .8. It also illustrates the distinct

separation of values and the correlation of ANN output to expected output. This can also

be supported by a graphical represemation similar to Figure 16 but with the data for

AVE.

Now there is an ANN output of safe and dangerous points, an RMS, and a link of

the terrain to the RMS. Also we have shown statistical metrics of mean error, standard

deviation of the error and percentage of dangerous points within a ROI. There also are

many different aspects of the visualizations of the ROI. All of these elements will be

used to determine whether two separate samples of geographic data are essentially similar

within predetermined tolerances. Additionally these metrics will be used to draw some
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relationshipsbetweenthegeographiccharacteristicsandassociatederrorsbetween

databases.

A completelisting of pertinentresultsfor all theairportsstudiedis illustrated

next. Thedatawill bebrokendowninto two distinctgroups. Thefirst grouprepresents

airportswith datacovetinganareaup to 60by 60 statutemiles. Again someof theROI

hadvoidsdueto alackof databut this isnot afactor asexplainedpreviously. The

airport datafilesof this groupwerevery largeandtime consumingto obtainand

manipulatefor processingby theANN. The ANN outputs for the airports of group 1

were for random samples taken from the complete data file. The second group of airports

is composed of data that covers only half the area as listed in the first group. The second

group was collected, as such, to enable the acquisition of a larger set of different airports

and also to allow the complete processing of the airport data file by an ANN.

Airport

1S4

AVL

CRQ

DEN

DTA

HII

PSP

SNA

Mean (m)

11.732

39.771

30.069

6.34

16.313

23.514

57.608

23.963

Standard

Deviation

34.268

39.405

34.889

10.36

28.342

32.489

50.920

35.272

Percentage

of Danger

Elevations

23.38

48.67

39.75

2.73

16.07

25.23

64.30

30.43

RMS

.3557

.2707

.1793

.2101

.3531

.4598

.3548

.4445

ANN Output

Classes

0.8,0.2

0.8,0.2

1,0

1,0

0.8,0.2

0.8,0.2

0.8,0.2

0.8,0.2

Table 13 Group One Summary of Metrics
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Airport

1S4

AVL

CRQ

DEN

DTA

HII

PSP

SNA

Count of

Elevation

Postings

46051

44499

34577

39398

42819

45174

46O62

Qualitative Visual Description

Elevation from 0-1363 m. One mountain

with possible river btwn rough terrain.

Elevation from 91-2039m. 2 mtns and

dominated by rough terrain.

Elevation from sea level to 1873m.

Coastal. One isolated mountain

Elevation from 1357-2283 m. Light slope

to beginnings of mountain area.

Elevation from 1380-3083m. Flat up to a

mountain ridge.

Elevation from 108-2317m. About 5

scattered mtns. Valleys in between.

Elevation from-70 to 3506m. Two

mountain ridges with a valley between.

Elevation from sea level to 1735m.

Visual

Representation

Appendix 1&

Appendix 4

Appendix 1&

Appendix 4

Appendix 1&

Appendix 4

Figs. 2,3,4,5,

13&

Appendix 4

Appendix 1&

Appendix 4

Appendix 1&

30273

Coastal. Steep climb to mountain ridge.

Appendix 4

Appendix 1&

Appendix 4

Appendix 1&

Appendix 4

Table 14. Group One Summary of Metrics
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Airport

48V

ASE

COS

EGE

JAC

LGU

MSO

SLC

FLG

Mean (m)

13.28

91.90

19.44

65.25

70.73

40.20

65.58

57.59

Standard

Deviation

26.86

54.89

29.29

45.29

56.35

45.59

48.15

54.41

Percentage

of Danger

Elevations

13.91

89.63

17.41

76.84

75.14

44.11

73.11

51.16

RMS

.3521

.7627

.3810

.7094

.7012

.5534

•6931

.5899

ANN Output

Classes

0.8,0.2

0.8,0.2

0.8,0.2

0.8,O.2

0.8,0.2

0.8,0.2

0.8,0.2

0.8,0.2

25.20 77.04 25.53 .4430 0.8,0.2

Table 15. Group Two Summary of Metrics
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Airport

48V

ASE

COS

EGE

JAC

LGU

MSO

SLC

FLG

Count of

Elevation

Postings

22443

22246

22317

22201

22956

22240

22373

16827

41131

Qualitative Visual Description

Elevation from1426-2980m. Flat to gradual

slope up to steep mountain ridge

Elevation from 1950-4340m. Most

elevation >3000m. Dominated by mtns.

Elevation from 1531-3771 m. Flat terrain to

high mountain range.

Elevation from1855-3730m. Very rough

mountains of varying degrees of slope.

Elevation from 1778-4199m. Rough and

mountainous.

Elevation from 1283-3038m. Rough and

mountainous around a plateau.

Elevation from 851-2792m. Rough and

mountainous.

Elevation from 1280'3501m. Half flat due

to lake progressing to steep mountain range.

Elevation from996-4399m. One high

mountain. Few other rough areas.

Visual

Representation

Appendix 4

Appendix 4

Appendix 4

Appendix 4

Appendix 4

Appendix 4

Appendix 4

Appendix 4

Appendix 4

Table 16. Group Two Summary of Metrics
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As DenverInternationalhasbeenintroduced in previous discussions first, we'll start

with it here. Statistical analysis, in Table 7, shows that only 1074 of 39398 points in the

ASMD are dangerous when compared to the USGS data. Ninety-seven percent of the

ASMD longitude, latitude, elevation triples are within a +30 meter tolerance. Also

exhibited in Table 6, the average ASMD error of the compared elevations is only 6

meters and the standard deviation is only 10 meters. Examining visualizations, Figure 3

is a 2-D view of USGS longitude, latitude, elevation triples overlaid with ASMD error

values. Only a small number of errors above our threshold are shown. The error values

within +30 meters are displayed as transparent to demonstrate good areas of elevation

values. Additionally, the points outside of the-30m error value are plotted and these are

easily evident in this perspective. Figure 4 shows a 3-D TIN of the error between the

ASMD and the USGS database. When the data is presented as a TIN the areas of missing

data from previous views are masked. These just need to be remembered but they don't

affect the analysis and as shown can be worked around with differing views. The

dominance of the light blue shading throughout supports the conclusion of low error

between the ASMD and USGS. The ANN output is absolute between the dangerous and

safe elevation values, classifies them as (1,0) and has a low RMS of .2101. The criteria

for an acceptable match between the two databases is outlined as mean error <30m, error

standard deviation <18m and dangerous elevation coverage <10%. ANN support is

offered by a low RMS, an absolute distinction between dangerous and safe values and

classification of these values at 1 and 0. The data for DEN positively supports that the

ASMD for this airport is a safe representation of actual conditions within the prescribed
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tolerance.DenverInternationalairportis theonly acceptedmatchbetweentheASMD

andUSGSwhenverifiedby all methodsemployed.

Also with respectto theRMS fromFigure 13andFigure51,a correlationcanbe

shownbetweenthe slopeof theterrainandthe elevationerrors. A low RMSis linked to

thelargespacebetweenthe contourlinesandthe sparsenessof redshadingin the

visualization.

Therestof the discussionwill illustratecharacteristicsor factorsthat wouldsupporta

rejectionof the matchbetweentheASMD andUSGSdatafor eachairport. Thenext

airport of interest is McClellan-Palomar (CRQ). It stands out as a candidate for a match

because the ANN model correctly classified the safe and dangerous values, predicted

them at 1,0 and the RMS for the model was low. This alone is not enough to accept the

ASMD data. All the other metrics for this airport are above acceptance criteria.. An

explanation can be found in the visualization of Figure 50 and the qualitative description

in Table 14 of McClellan-Palomar. Depicted is an area moderately sloped with an

isolated mountain. Remember that CRQ is from the Group 1 airports where the ANN

model was tested on a random sample of the data in the ROI. This just happens to be a

case where the random sample was not representative. The sample data covers a good-

sized area but just a small portion of it contains that representative of the isolated

mountain where the terrain is steeply sloped. It has been concluded and supported that

the RMS is greatly affected by sloping terrain. The lack of inclusion of it in the ANN

model for this airport influenced the unsupportive ANN output. This issue will be dealt

with later with the Group 2 airports when the ANN model will process the entire ROI.

This factor just surfaced on this individual airport and doesn't seem to be a factor on the
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other7 airportsin Group1. Thevisualizationaspectwasa strongtool whenthe

disagreementbetweentheANN outputandthe statisticaloutputwasevident. Utilizing

the acceptancecriteria listed,noneof therestof the airportsin Group1canbeconsidered

amatchbetweenthe ASMD andUSGSdata.??

Therestof thediscussionwill focuson theGroup2 airports. Theseairportsaremuch

morerepresentativeof terrainimpactedareasandcontainmoreslope/steepnessand

generalsurfaceroughness.An obviouscharacteristicof all these airports' results is that

the ANN RMS' are all above .3500 and none of the outputs could be classified to the

design criteria with dangerous and safe values of 1 and 0. However, the ANN model did

correctly and absolutely distinguish safe and dangerous elevations. The model has been

successful and unfailing here. A look at the graphics in Appendix 4 supports the fact that

the RMS of the ANN is related to the steepness of the terrain. The magnitude of the

RMS coincides with the slope of the terrain and with its coverage. The significance of

the ANN's ability to illustrate the measure of slope and the elevation errors related to the

sloping topography is important in concluding or rejecting a match between terrain

databases. Without this insight a possible errant determination could be made. For

instance two possible examples where an inaccurate conclusion could be formed are

exhibited in Tri-County (48V) airport and City of Colorado Springs (COS) airport. If the

only metric utilized was that chosen in the preliminary research, you would be led to

believe that for these two airports the ASMD and USGS are similar. The output of the

ANN contradicts this assumption and further evidence is gained from the visual

representations in Appendix 4. The areas are dominated by a flat or gradually sloping

landscape and then move to a prominent steep mountain range. These mountain ranges
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havea noteworthyamountof errorassociatedwith themandtheir disregardis perilous.

Sofar wehavediscussedagoodmatchof databasesand some questionable and

inconsistent evidence. A solid illustration of a bad match is Aspen-Pitkin County/Sardy

field (ASE). The ANN distinguished between safe and dangerous values but had a very

high RMS and the predicted output was in the neighborhood of .2 and .8. This would

lead to a rejection of matching databases. This is further enhanced by the statistics and

the visualization of a predominantly red ROI indicating error greater than the threshold

over a large portion of the data that is representative of very rough and sloping

mountainous terrain.

To cover a more complete spectrum in this research, included in the Group 2 airports

is a ROI of 60 by 60 statute miles that was processed with the valid ANN model.

Flagstaff-Pulliam (FLG) airport was the experiment. The RMS of the ANN suggests that

the databases don't match. From this number it may be hypothesized that there are some

features with elevation error related to sharp sloping topography. The area covered by

the ROI is not completely rough or mountainous but does have some elements of

moderate slope and not vast areas of flat or gradual landscape. It may not be hazardous

terrain throughout but there are prominent features that elevate the danger factor for this

area.

This airport illustrates an added benefit and a byproduct of the research. A look at the

statistics shows a very high standard deviation for the errors. Also a histogram of the

data shows a decent number of very large outliers. A two-dimensional and three-

dimensional view of the error shows a huge error in a distinct area of the ROI. This was
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exploredandadiscrepancywasfoundin theUSGSelevationdata. This instancewasnot

just specificto FLG andsomeirregularitieswerediscoveredin CRQandAVL.

Additionally the visualizationaspectcanbeusedto supporttheresearchof PhaseII.

VisualizationscanbeconstructedillustratingactualUSGSelevationsoverlaidonthe

ASMD elevations(e.g.,Fig 5). Theintentof suchagraphicis to showwheretheASMD

elevationsaregreaterthantheUSGSelevations.Redtimed areas can show USGS

elevations greater than ASMD elevations and are classified as risky. This does not by

itself identify the airport ROI out of a +30m tolerance as investigated in Phase III, but it

can give insight into the ASMD being within a threshold. If the area is predominantly

colored with the terrain elevation color scale then the ASMD error will be negative and

obviously under a positive threshold. The fact that a predominantly red shaded graphic is

not indicative of a bad ASMD to USGS comparison is illustrated well by the analysis of

DEN (Fig. 5) which is mostly red, but the data shows 97% of the points are under the +30

threshold and the mean ASMD error is only 6 meters.

5.Conclusions

Artificial neural networks have arisen from analogies with models of the way that

human might approach pattern recognition tasks, although they have developed a long

way from the biological roots. Great claims have been made for these procedures, and

although few of these claims have withstood careful scrutiny, neural network methods

have had great impact on pattern recognition practice. A theoretical understanding of how

they work is still under construction. (Ripley, 1995).

Artificial neural networks proved viable in pattern recognition in terrain databases.

The ANN models investigated were able to discern areas of acceptable data and areas of
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unacceptablehazardousdata. Additionally, they were able to classify error between two

similar databases as safe or dangerous with respect to a chosen criteria or error threshold.

The strength of the classification seemed to be linked to certain aspects of the terrain.

The ability of the ANN to offer this underlying indication was noteworthy. This

indicator brought light to weaknesses of other methods and metrics used in comparison of

terrain data. A substantial enhancement to the use of ANN s was a visualization aspect. It

complimented the results of the ANN output and allowed the discovery of a link between

the strength of the ANN classification and the degree of slope within the chosen area of

interest. Furthermore, the visualizations also added support to the criticism of statistical

metrics. An elevated predominantly flat terrain with either an isolated mountain or a

ridgeline covering a minor percentage of the area of interest could give a low average

error for a relatively large area. The steep mountainous area, although not dominant, is

significant. The large number of low errors offset the small concentration of large errors

outputting a low average that could mask the hazard area and lead to the belief that the

two databases are similar within tolerances. A picture of the errors reveals the large

concentration of high errors that are very dangerous in their part of the area of interest.

The ANN also alluded to this with its output of an RMS value greater than .2 and an

inability to classify points at absolute values of zero or one.

There is a considerable overlap between the fields of neural networks and statistics.

While neural networks are often defined in terms their algorithms or implementations,

statistical models are usually defined in terms of their results. There are many ideas in

research literature in order to explain why to use ANNs rather than any of the statistical

methods. Depending on the answer sought, some popular ANN models is useful in the
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samesituationasaregression,where:the numberof inputsis fairly large,manyof inputs

arerelevant,but mostof thepredictiveinformationlies in a low-dimensionalsubspace.

Otherfindingsexhibitedin theresearchinvestigationpertainto datadensityreduction

andsamplingof the regionof interest.In oneinstancearandomsamplefrom theROI

wasnot atrue indicatorof theentireROI. Therandomsamplewasnotrepresentative

andgavefalseresults. It is imperativethatthe samplebe representative.Therandom

choiceof pointsmayexcludemajorterrainfeaturesthatareathreatto aircraftsafety.

Thedatadensitywasdictatedby theASMD. Thiswasnot nearlyasgoodasthe 10m

spacingor eventhe 30m spacingof theUSGS. This couldhavebeenafactorin many

of themismatches.An addedbenefitof thevisualizationaspectof theresearchis the

discoveryof outliersanderrorin theunderlyingdatausedasthe standard.Thiswas

demonstratedin isolatedareasin 4 of the examinedairports.

6.Further Research and Discussions

Using 17 sets of airport data that aids visualization, our results may help to explain if

the data is suitable to use for cockpit simulation on particular airports. As mentioned

earlier, some of the airports yielded high RMS results.

The sample size and sampling areas are also other factors that might influence on

the results. A research question that can be further explored is whether training and

testing sets should be chosen by randomly or by some systematic algorithm. Those two

factors can be explored for the further research. If it is then we go back the question ".

Does training and testing sets should be chosen by randomly or by some systematic

algorithm? and suggest some further research on it. Incorporation of ANN in a larger

database accuracy methodology.
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A largerresearchquestiondeals with the use of ANN for a more comprehensive

role in terrain database correlation analysis methodologies. In this project, ANN models

did show promise for simulating aggregate statistical analyses, which are part of an

overall assessment of database correlation. Of even greater importance is the role the

human analyst provides in terrain database correlation judgments, which deal with the

cognitive synthesis of statistical measures, as well as analyzing comparative

visualizations of aggregate and local database areas. By capturing such analyst

processes, and feeding such human database pattern recognition changes and conclusions

into ANN models, assessments can be made of ANN for a role in helping to higher-level

cognitive recommendations to analysts, based on previous similar analysis procedures.
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Appendix 1.

Data acquisition of United States Geologic Survey (USGS) 7.5' Digital Elevation
Model (DEM) data.

A checklist has been developed for the construction of a region of interest around a

desired airport of geographic point pairs of elevation values from United States Geologic

Survey (USGS) data and Airport Safety Modeling Data (ASMD).

Data Acquisition

1. Airport Selection

2. Airport Reference Point

3. Determination of Region of Interest (ROI) and calculation of edge boundaries for
ROI

4. Determination of central DEM and county in which airport is located

5. Production of a template of inclusive USGS DEMS

6. Download of data from the web

7. Determination of other counties represented in DEM template, if necessary

8. Review associated .TXT files of downloaded DEMs

9. Unzip files of each DEM

10. Merge compatible 1:24000 7.5' DEMs utilizing MICRODEM ©

11. View merged DEMs for quality assurance

12. Export merged DEMs into files of xyz triples

13. Merge and format conversion of xyz triples into a size and format useable within

Visual Basic © data point matching and error computation program.

14. Import output of Visual Basic © program into Excel © for statistical analysis
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Amplifying information for each checklist item above follows:

1. Chosen from the list of ASMD airports contained in the US_INDEX file of

the original data.

2. Located in the header of the ASMD airport data file.

3. Can be taken from the expanded index document included in this Appendix or

calculated if other than 30 nm. The determination of the edge boundaries does

not have to be exact but must be large enough to contain the entire ROI. This

can also be estimated in the completion of step 5.

4. This information can be found through the web site-

htt ://edcwww.cr.us s. ov/Web_lis/_lisbin/finder ma _. "_Igdata '" ' - • . set_name--MA
PS LARGE.

5. This is accomplished through the following web site-

Construct a template similar to that of Figure 1 until all DEMs have been

filled in to cover the area depicted by the ROI.

6. This is completed through the web site-

The free data are the

1"24,000 7.5' DEMs in SDTS format. They are in either 10m or 30m spacing.

Download time for 10m spacing is much greater than that for 30m, i.e. 15

minutes vice 2 minutes with a broadband connection. Also, download the

accompanying .txt file.

7. In the construction of the tiled ROI, oitentimes the area covers multiple

counties and possibly other states. If you exhaust the DEMs in one county

you must return to the website listed in step 4 to discover the other counties

required. If a state border is crossed that information can be seen on the map

view of the website listed in step 5.

8. A review of the .txt file for each downloaded DEMs is necessary to find out

certain information necessary for successful merging later. Items of

importance are spacing of 10m or 30m; z value in tt or meters; UTM zone;

Data level 1 or 2; Vertical datum and Horizontal datum.
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9. Proceduresfor Unzip of the .tar.gzfiles aregivenin a tutorial ontheweblink

websitefor DEM downloadhasbeenchangedsincetheproductionof this

tutorialin 1998,it offerspertinentinformationrelatedto versionsof WINZIP

Whenunzipped,19fileswill beextracted.Theactualdatais containedin the
file with the####celo.ddfextension.

10.MICRODEM ©ver 5.1revl2/11/2001andver 5.12rev 1/7/2002wasusedto

convertthe SDTSformatto aMICRODEM formatandthento XYZ triplesof

longitude,latitude,elevation.Thedatamanipulationmenuwasusedwith the

featuresof mergeandexportbeingtheprimaryfunctions. Thedataobtained

from theUSGSDEM .txt file is necessaryhereto geta successfulmerge.The

mergedDEMs mustbein thesameUTM zone.Datumtransformationand

geographiccoordinatesareaccomplishedautomaticallyby MICRODEMto

that setin theoptionstab. All thebaselineparametersshouldbesetprior to

enteringthedatamanipulationmenu. Someversionsof MICRODEM

automaticallyconvertthedifferentz valuesof feetandmetersto all meters.

In thisprojectonly DEMsof similar spacing,UTM, z,horizontalandvertical

datumweremergedtogether.SomeDEMswerejust mergedindividually for

formatconversion.Also,with 10mspacingalimited numberof DEMswere

mergedto keepthefiles to aworkablesizeafterexport. Toomany10m

DEMs significantlyimpactedprocessingtimeboth in MICRODEM andin
follow on applications.

11.In MICRODEM, eachmergedDEM wasviewedto ensureagoodproduct

beforecontinuingto thefollow onexportandotherprocessing.Thenext

stepsaretime consumingandagoodproducthereeliminateslengthyrework.

12.Exportof theDEMsinto XYZ triplesof longitude,latitude,elevationin

meters.OftentheentireROI of DEMs couldnot beexportedin onefile. It

waseithertoo largeor haddifferingparametersaslistedin the descriptivetext

files. WhennecessarytheDEMsweremergedandexportedby rows. The

conventionwith thelower lef_cornerbeingthe startingpoint wasfollowed in
namingfiles andbuildingtheentireROI.
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13.Two computerprogramsdevelopedin prior researchwereusedin this step. A

Demmergeprogramis usedto consolidatethe output XYZ triples files of

MICRODEM. This was necessary for those DEMs with differing descriptive

information before the merge and export but now all data is of the same

format after the export. Also the Demmerge program reformats the data to

that required for the next process. Again, it should be noted that the 10 m

spacing has an impact on processing time. Also, the size of a merged file

could outgrow that capable by the next computer application. Parameters will

go out of bounds. The Demmerge program gives an indication of the number

of points in the file. Typical size ranges from 4 to 7 million points. 10

million is the limit. When an ROI exceeds 10 million points the .next process

is just repeated until all the individual pieces of an ROI for a single airport are

finished. For a 30 mile ROI with many 10 m DEMs the Demmerge and

follow on processing is very lengthy. With a computer with an average speed

processor it could take a few days running continuously to complete a single

ROI. After the Demmerge program, the next process is pair- wise geographic

location matching of elevations from the USGS database and the ASMD

database. This program was also developed in prior research. It was modified

slightly because of a newer version of MICRODEM. The need for a datum

transformation no longer exists with that capability added to MICRODEM.

Also some features still in development in the previous research were

remarked out to increase processing time.

The final step is just import of the raw data output from the Visual Basic

programs into Excel spreadsheets for further analysis and use by follow on

applications. A sample of the final product is shown below:

LAKE HAVASU CITY

ASMD ROI average elevation is 507.9962013

Counter asmdlat asmdlongasmdelevasmderrorusgselevUSGS posts
1 34.1792 114.8017 630 94 724 302

2 34.1833 114.8017 758 46 804 300

3 34.2 114.8017 822 28 850 282
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Appendix 2

Select Visualizations for Sample Airports

AVL

CRQ

DTA

HII

PSP

SNA

1$4 SCAPPOOSE INDUSTRIAL AIRPARK

ASHEVILLE REGIONAL

MC CLELLAN-PALOMAR

DELTA MUNI

LAKE HAVASU CITY

PALM SPR/NGS REGIONAL

JOHN WAYNE AIRPORT-ORANGE COUNTY
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1S4 SCAPPOOSE INDUSTRIAL A_A_

Color

|_ I

i _iiii!iiiii _1i

. m

Elevation (m)

1205-1356

1055-1205

904-1055

753-904

603-753

452-603

301-452

151-301

0-151

2-Dimensional Representation of 1S4 _om ASMD

Figure 20. Visualizations of 1S4 from ASMD
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2-D view of AS_ Error v. USGS Elevation

Elevation (m)

1212-1363

1060-1212

909-1060

757-909

606-757

454-606

303-454

151-303

0-151

Color

__m

i I

Elevation (m)

150-744

50-150

30-50

-30- 30*

-43 - -30

*This color band is transparent to so that

values within limits show through.

Figure 21. Visualizations of 1$4 from USGS Data and ASMD Error
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3-D TIN of ASMD Error

Color
Elevation (m)

150-744

50-150

30-50

-30 - 30

-43 - -30

Figure 22.Visualizations of 1S4 from ASMD Error Data
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AVL ASHEVILLE REGIONAL

Color
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............................... r

Elevation (m)

1821-2018

1624-1821

1427-1624

1230-1427

1033-1230

836-1033

639-836

442-639

245-442

2-Dimensional Representation of AVL from AS_ .......-I

Figure 23.Visualizations of AVL from ASMD
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2-D view of ASMD Error v. USGS Elevation

Elevation (m)

1823-2039

1606-1823

1390-1606

1173-1390

__ '_::i:i__i_'_"_:_'_:_:_957-1173

740-957

524-740

307-524

91-307

Color Elevation (m)

150-274

50-150

30-50

-30-30*

-266 - -30

*This color band is transparent to so that

values within limits show through.

Figure 24. Visualizations of AVL from USGS Data and ASMD Error
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Color Elevation (m)

150-274

50-150

30-50

-30-30

-266 - -30

Figure 25.Visualizations of AVL from ASMD Error Data
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3-D TIN of USGSElevationoverlaidASMD Elevation

Color Elevation(m)

-2018

[[[[[[[[[[[[_ I 1624-1821

i 1427-1624

I 1230-1427

I 1033-1230

i 836-1033

I 639-836

_ I 442-639

l 245-442

ASMD ElevationLegend

Color Elevation(m)

1823-2039

1606-1823

1390-1606

1173-1390

957-1173

740-957

524-740

307-524

91-307

USGSElevationLegend

Figure26.Visualizationsof AVL from ASMD andUSGSData
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CRQ MC CLELLAN-PALOMAR

Color
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1436-1641

1231-1436

1026-1231

820-1026

615-820

410-615

205-410

0-205

2-Dimensional Representation of CRQ from AS_

Figure 27.Visualizations of CRQ from ASMD
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2-D view of ASMD Error v. USGS Elevation

Elevation (m)
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* This color band is transparent to so that values

within limits show through.

Figure 28.Visualizations of CRQ from USGS Data and ASMD Error
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Color Elevation (m)

150-608

50-150

30-50
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Figure 29.Visualizations of CRQ from ASMD Error Data
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Elevation (m)

150-608
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Figure 30.Visualizations of CRQ from ASMD Error Data
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Color Elevation(m)
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615-820

410-615
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1665-1873

1457-1665
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ASMD ElevationLegend USGSElevationLegend

Figure31.Visualizationsof CRQfrom ASMD andUSGSData
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DTA

Color

t , ,i

m2_LL_

DELTA MUNI

Elevation (m)

2864-3050

2678-2864

2492-2678

2306-2492

2119-2306

1933-2119

1747-1933

1561-1747

13 75-1561

2-Dimensional Representation of DTA from AS_

Figure 32.Visualizations of DTA from ASMD
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2-DView of ASMD Error v. USGSElevation

Color

I...... i
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Elevation (m)

2894-3083
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1380-1569

Color Elevation (m)

150-342
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30-50

-30- 30*
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* This color band is transparent to so that

values within limits show through.

Figure 33.Visualizations of DTA from USGS Data and ASMD Error
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Figure 34.Visualizations of DTA from ASMD Error Data
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Elevation (m)

2894:3083

2705-2894

2515-2705

2326-2515

2137-2326

1948-213 7

1758-1948

1569-1758

1380-1569

USGS Elevation Legend

Figure 35.Visualizations of DTA from ASMD and USGS Data
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ttli LAKE HAVASU CITY

Elevation (m)

2045-2286

1804-2045

1562-1804

1321-1562

1080-1321

839-1080

597-839

356-597

115-356

3-Dimensional T_ of_ from AS_
...... ...........

Figure 36.Visualizations of HII from ASMD
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?2-D view of ASMD Error v. USGSElevation

Elevation(m)

2072-2317

E, ! _ 1826-2072
1581-1826

1335-1581

........•.__,_-_-_,._'_+_....._"_ 1090-1335

844-1090

599-844

353-599

_ I 108-353

Color

v

Elevation (m)

150-365

50-150

30-50

-30 - 30*

-46- -30

*This color band is transparent to so that

values within limits show through.

Figure 37.Visualizations of HII from USGS Data and ASMD Error
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Color Elevation (m)

150-365

50-150

30-50

-30- 30

-46 - -30

Figure 38.Visualizations of HII from ASMD Error Data
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i

Color

....................... rrrr

Elevation (m)

2045-2286

1804-2045

1562-1804

1321-1562

1080-1321

83 9-1080

597-839

356-597

115-356

ASMD Elevation Legend

Color Elevation (m)

2072-2317

1826-2072

1581-1826

1335-1581

1090-1335

844-1090

599-844

353-599

108-353

USGS Elevation Legend

Figure 39.Visualizations of HII from ASMD and USGS Data
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PSP PALM SPRINGS REGIONAL

Elevation (m)

3057-3448

2666-3057

2276-2666

1885-2276

1494-1885

1103-1494

713-1103

322-713

-69-322

2-Dimensional Representation of PSP from ASMD

3-Dimensional TIN of PSP from ASMD

Figure 40.Visualizations of PSP from ASMD

77



2-D view of AS_ Errorv. USGSElevation

Color

__ • __ ,

i_i iiiiiii_!!!_

Elevation (m)

3109-3506

2711-3109

2314-2711

1917-2314

1519-1917

1122-1519

725-1122

327-725

-70-327

Color

i 1

Elevation (m)

150-357

50-150

30-50

-30 - 30*

-127- -30

*This color band is transparent to so that

values within limits show through.

Figure 41.Visualizations of PSP from USGS Data and ASMD Error
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Color

i iiiiiiiii!

_ii! !iiiiii!!!!!_

50-150

30-50

-30-30

-127 - -30

Figure 42.Visualizations of PSP from ASMD Error Data
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3-D TIN of USGS Elevation overlaid ASMD Elevation

Color Elevation (m)

3057-3448

2666-3057

2276-2666

1885-2276

1494-1885

1103-1494

713-1103

322-713

-69-322

ASMD Elevation Legend

Color Elevation (m)

3109-3506

2711-3109

2314-2711

1917-2314

1519-1917

1122-1519

F ........" i"'_ 725-1122

[ _. _ 327-725

-70-327

USGS Elevation Legend I

Figure 43.Visualizations of PSP from ASMD and USGS Data
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SNA JOHN WAYNE A_ORT-ORANGE COUNTY

Color

[__ , |

.......................... 11.

Elevation (m)

i 541-1734

1349-1541

1156-1349

993-1156

771-993

578-771

3.85-578

193-385

0-193

2-Dimensional Representation of SNA from AS_ ]

I

Figure 44.Visualizations of SNA from ASMD
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2-D View of ASMD Error v. USGS Elevation

Elevation (m)

1542-1735

_ :_ 1349-1542

1157-1349

964-1157

771-964

578-771

386-578

193-386

0-193

Elevation (m)

150-248

50-150

30-50

-30 - 30*

-119 - -30

*This color band is transparent to so that

values within limits show through.

Figure 45.Visualizations of SNA from USGS Data and ASMD Error
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Color Elevation(m)

150-248

50-150

30-5O

-30-30

-119 - -30

Figure46.Visualizationsof SNA from ASMD Error Data
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3-DT_ of USGS Elevation overlaid AS

Color Elevation (m)

1541-1734

1349-1541

1156-1349

993-11516

771-993

578-771

385-578

193-3,85

0-193

Color

!i! i!!!iN

Elevation (m)

1542-1735

1349-1542

1157-1349

964-1157

771-964

578-771

386-578

193-386

0-193

ASMD Elevation Legend USGS Elevation Legend

Figure 47.Visualizations of SNA from ASMD and USGS Data
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Appendix3

SelectStatisticalOutputfor SampleAirports

1$4 SCAPPOOSEINDUSTRIAL AIRPARK

AVL ASHEVILLE REGIONAL

CRQ MC CLELLAN-PALOMAR

DTA DELTA MLrNI

HII LAKE HAVASU CITY

PSP PALM SPRINGSREGIONAL

SNA JOHNWAYNE A/RPORT-ORANGECOUNTY

85



1S4 SCAPPOOSE INDUSTRIAL AIRPARK

L

Bin Frequency

-72 1

-31.2 3490

9.6 21360

50.4 15997

91.2 4058

132 913

172.8 174

213.6 42

254.4 6

295.2 2

336 0

376.8 0

417.6 0

458.4 0

499.2 0

540 0

580.8 0

621.6 0

662.4 4

703.2 2

744 2

More 0
_

25000 _ram

!_i_i;!_i_i_;i_i_iii_i_i_!!_iii!i_ii!ii_iiiiiii!_i!iiiii!!ii!_!_!_iii!_!!!iii!!_!i_ii!!_!i_!i_iii!!i_iiii_!iiiii!i!!iii_i_i_Uii_ii_!_i_i

20000 __...._____:_::_:_:_:_:_ """_"_"""_'_'_"_:i"i_:_:_::'_'_'

15000

g . i ;_
0 0O0_.1 .i_iii_,iiiiiii!iiiiii!iiiiiiiii!iiiiiililil!iiii!ii_iiii_iii_ii_iiiii_i_ii_!i_!_i_i_i!_i_i!iiiii_iii_iiiii!i!iii_iii_ii_!_i_iii_i!_i_ii!i!_!_i_i_i!ii_!_i_i_i_!_i_i_!i!_i_iii_!ii_i_i_i_i_ii!_iiiiiiiiiiii_i_i!i_i_i_ii_iiiii_iiiii_i_iii_ii_iii_i_!!ii_iii_ii_!i_iiii_ii_iiiii_iiiiiiiii_i_iiiiii_i_iii_i_;_ii_;_iiiiii_ii!iiiiii_i_ii_ii_ii_i_iii_i_iiiii_ii

_ ii iii

Mean Error
, ,,

M_an

Mode
Standard
Deviation

-Sample
Variance

Range
Minimum

/V[axilnUlll

Count
....

11.732167

6

-7

34.267535

1174.2639

816

-72
744

46051

# Safe values

....# Danger values
Total

,,

% Dangerous

35285

10766

46051

76.62%

23.38%
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AVL ASHEVILLE REGIONAL

Bin Frequency

-266 2

-239 20

-212 26

-185 9

-158 0

-131 0

-104 0

-77 0

-50 3

-23 49

4 6647

31 16467

58 8934

85 6241

112 3721

139 1592

166 558

193

220

247

274

More

176

44

5

5

0

Histogram

Mean Error
Median

Mode

Standard
Deviation

Sample
Variance

_Range
Minimum

Maxim.m
Count

39.7714106

29

39.4052989

1552.77758

540

-266

274

44499

# Safe values

# Danger values
Total

% Safe

22841

21658

44499

51.33%

% Dangerous 48.67%
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CRQ MC CLELLAN-PALOMAR

L , ,

Bin Frequency,_

-154 1

-115.9 11

-77.8 21

-39.7 178

-1.6 2071

36.5 20771

74.6 7958

112.7 2511

150.8 773

188.9 210

227 60

265.1 8

303.2 1

341.3 1

379.4 0

417.5 0

455.6 0

493.7 0

531.8 0

569.9 0

608 2

More 0

Mean Error

Median

Mode

Standard
Deviation

Sample
Variance

Range
Minimum
.Maximum
Count

30.06943• 92
,

22

0

34.8891955
,

1217.25597

762

-154

608

34577

# Safe values

# Danger
values

Total

% Safe

__% Dangerous

20834-

13743

34577

6o.25%

39.75%
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DTA DELTA MUNI

Bin Frequency_
-49 1

-29.45 26

-9.9 614

9.65 23809

29.2 11265

48.75 2933

68.3 1560

87.85 919

107.4 673

126.95 427

146.5 289

166.05 162

185.6 81

205.15 34

224.7 10

244.25 10

263.8 3

283.35 2

302.9 0

322.45 0

342 1

More 0

Histogram

20000

 .15ooo
o

D"

 1oooo

ii!iii::iiiiiiiii!!_iii::i_iiii::iiiiiiiiiii_iiii::iiiii_iii::i::!!iiiiiiii!ii i::iiiiii::!iii!ii_iii:_iiiiiiiii:_i_iii::i'_iiii!'_ii!iiii_i::ii!ii::iii_ii!:::_iiiii':ili::;ii::iii i ::iii_i::iiiiiii!ii::iiiiiii::!iii!i_i!::i::!ii!::ii!::::iiiiii'_ii_ii!::i::i!ii!::i::i::i!::i!i#i::ii::ii!iiiiii_i_i#i_i::ii::i_iii_i::iiiiii!!_i_iiiiiii::i::ili::i::iii::iiiii!iiiiiiiii!::iii_iii::iiiii!i_i#i#iii#iii::i!i::iiii::iiiiiiiiiiiiiiiiiii::i_ii!i!iiiiiiiii#iii::#ii::i::i':iiiii_i::i=:!_iiiii::i::i::i::i::i_i:::.:.I

i',i',!iiii',ili_iii',iiiiiiliiiiiiiiiiiiiiiiiii',iiiiil;iiiil ililii _!iiiiiil, _iiiil;ii_iiiiiiiiiii',ilili',iiiii!i;iii!iiiiiiiiii!i;iiiiiiiiiiiiiii!ii_iili!i!ii!iiiiiiiiii!iilliiiiii!!iiiiiiii'_iiii!iiiiiiii!iiii!ii!iiiiillii;iiiiii!i!iiiiiiiii!iliiiiiii!iiiii!iiiii!iiiiii!!iiii!',ii!i':ii!iiiiiii!iii!ii'_iiiiiii!!ili!iliiiiii!ii',iiliiiiiiiiiiiiiiiiiiiiilli_,ii!ilii!ii!ii!i!iiiii!iliiiiiiiiiili'_iii_,iliiiiiiiiii_{

i i 1 i I I l I I I ! I i I l I I I i i lq

Mean Error

Median

Mode
,

Standard
Deviation

Sample
Variance

_

Range
Minimum
Maximum

Count

16.312945

7

1

28.341519

803.24169

391

-49

342

42819

# Safe values

# Danger values
,,

Total

% Safe

• % Dangerous

35939

6880

42819

83.930/0 -

16.07%
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HII LAKE HAVASU CITY

Bin Frequency

-46 1

-25.45 15

-4.9 2080

15.65 23451

36.2 10049

56.75 3963

77.3 2418

97.85 1344

118.4 816

138.95 452

159.5 233

180.05 151

200.6 98

221.15 42

241.7 25

262.25 14

282.8 10

303.35 4

323.9 5

344.45 0

365 3

More 0

Mean Error

Median

Mode

Standard

Deviation

Sample
Variance

Range
Minimum

Maximum

Count

23.5138575-

13

0

32.4888211

I055.52349

411

-46

365

45174

# Safe values

# Danger
values

Total

% Safe

%___Dangerous

33775

11399

45174

74.77%

25.23%
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PSP PALM SPRINGS REGIONAL

Bin Frequency

-127 1

-102.8 5

-78.6 25

-54.4 78

-30.2 201

-6 1438

18.2 8428

42.4 11373

66.6 8169

90.8 6089

115 4270

139.2 2541

163.4 1590

187.6 862

211.8 484

236 246

260.2 140

284.4 69

308.6 33

332.8 13

357 7

More 0
,,

Histogram
12000 ..........................................................._,,_,_,_,,_,,,_,_,_,_,,,__,,_:_,:_,_,,_,_,_,_,_,,,_,__,_i_i_i__ii_T_i_i

i i iiiiiiiiilii iilili!ii!! iii

oooo-i ! .......... j

£°°° 1
iiiiiiiiiiiiiiiiililiiiiiiiii!iiiiiiliiiiiiiiiiiiiiiiiiiiiii!ililiiiliiii!ii!iiiii.i!!ii,iii_1_i!_i_i_i_!_i_i_ii!i_!_i_iii!_!_i_i!_iii_iiii!_!_i!_iiii_i_i_iii_iiii_iii_iii_!ii_ii_/
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U 1 I i I I l | l i l I t t i I I I I 1 t 1

r--- CO 0-4 0-4 CO tt"J x:¢" CO C'4 CO r"--

Cxi CO CZ) CO CO _ O-J _ CZ) C)O L£_
r--- Cr_ v--- Co v-- CO v--- CO CZ) CO

' ' Bin'- _ _ co

Mean Error 57.6077244
, ,

Median 47
, ,

Mode 25

Standard

Deviation 50.9197299

Sample .............
Variance 2592.81889

Range 484
Minimum .... -127

Maximum 357

Count 46062

# Safe values 16445

#Danger
values 29617

Total 46062

% Safe 35.70%

% Dangerous 64.30%
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SNA JOHN WAYNE AIRPORT-O_NGE COUNTY

Bin Frequency

-119 3

-100.65 1

-82.3 3

-63.95 12

-45.6 11

-27.25 59

-8.9 443

9.45 15631

27.8 4245

46.15 3755

64.5 2376

82.85 1443

101.2 873

119.55 542

137.9 398

156.25 250

174.6 116

192.95 77

211.3 19

229.65 11

248 5

More 0

Histogram

18000 -

16000

14000 _u_i_;i! i _Fre_Uency]

>, 12000
u

.= oooo
:3

g 8000
" 6000

4000

 oooii __ii
O I ! I I I t I ........ t '1 I ..... I 1 I I I I | I i I I

CO 03 ¢..0 03 CO LO ("4 03 ¢.,0 03 03

¢0 _I" ' ("4 ¢..0 0 _ r,.- r-- ('-,4
I I

Bin'- _ "-

Mean Error

Me.an
,

Mode

Standard
Deviation

Sample
Variance

Range
Minimum

Maximum

Count
....

23.9629042
, ,,

35.2723403

1244.13799

367

-119

248

30273

# Safe values

# Danger
values

21062

9211

Total 30273

% Safe

% Dangerous

69.57%

30.43%
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Appendix 4

Contour and Error Representation Visualizations for All Sampled Airports

1S4 SCAPPOOSE INDUSTRIAL AIRPARK

AVL ASHEVILLE REGIONAL

CRQ MC CLELLAN-PALOMAR

DEN DENVER INTERNATIONAL AIRPORT

DTA DELTA MUNI

HII LAKE HAVASU CITY

PSP PALM SPRINGS REGIONAL

SNA JOHN WAYNE AIRPORT-ORANGE COUNTY

48V TRI-COUNTY

ASE ASPEN PITKIN

COS CITY OF COLORADO SPRINGS

EGE EAGLE COUNTY

JAC JACKSON HOLE

LGU LOGAN CACHE

MSO MISSOULA

SLC SALT LAKE CITY

FLG FLAGSTAFF PULLIAM
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Figure 48. SCAPPOOSE INDUSTRIAL __ Contour and Error Representation

i_ i£i flail_i ¸ i_iii:i_'¸ _ ii_.............i/! _ _iiii!:i_iiii!iiiii_....../ ...... _i_:i

Figure 49. ASHEVILLE _GION_ Comour and Error Representation

Figure 50.MC CLELLAN-PALoMAR Contour and Error Representation
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Figure51. DENVER INTERNATIONAL AIRPORT Contour and Error Representation

Figure 52.DELTA MUNI Comour and Error Representation

Figure 53.LAKE HAVASU CITY Contour and Error Representation
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Figure 54. PALM SP_GS _GIONAL Comour and Error Representation

Figure 5 5.JOHN WAYNE AIRPORT-O_GE COUNTY Contour and Error

Representation
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Figure 58.CITY OF COLO_O SPRINGS Contour and Error Representation
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Figure 59. EAGLE COUNTY Comour and Error Representation

Figure 60. JACKSON HOLE Comour _d Error Representation

Figure 61.LOGAN CACHE Contour and Error Representation
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Figure62.MISSO_A Como_ andErrorRepresentation

Figure63. SALT LAKE CITY ContourandErrorRepresentation
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Figure 64. FLAGSTAFF PULLIAM Contour and Error Representation
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